Skip to main content

This notebook was created by Weilun Qin (weilun.qin@desy.de). Feb. 2024.

10. Corrugated Structure

In this tutorial, we show a few examples for tracking with parallel-plate corrugated structures. The wakefields model we used are based on analytical wakefield formulas for flat corrugated structures. Details of the wake can be found in Short-range wakefields in an L-shaped corrugated structure. Tracking algorithm of the wakefields in OCELOT with a second order Taylor expansion method can be found in tutorial N4. Wakefields. Here we also present an extended 3rd order method.

Load packages

# the output of plotting commands is displayed inline within frontends,
# directly below the code cell that produced it
%matplotlib inline

import time

# this python library provides generic shallow (copy) and deep copy (deepcopy) operations
from copy import deepcopy

# import from Ocelot main modules and functions
from ocelot import *
from ocelot.cpbd.wake3D import *
from ocelot.adaptors.astra2ocelot import *
from ocelot.adaptors.genesis import *

# import from Ocelot graphical modules
from ocelot.gui.accelerator import *

import matplotlib as mpl
from matplotlib.colors import LinearSegmentedColormap, to_hex

mpl.rcParams.update({'font.size':20,'axes.labelsize':20,'lines.linewidth':2})
plt.rcParams['axes.prop_cycle'] = plt.cycler(color=['#1f77b4','#ff7f0e','#2ca02c'])
    initializing ocelot...
import: module PYFFTW is not installed. Install it to speed up calculation
wave.py: module PYFFTW is not installed. Install it if you want speed up dfl wavefront calculations

Define functions

We define functions to track with different wake model for easier comparison of the models. We also add artificial tilt parameter tiltX and tiltY. In the thin approximation, the structure is set to 1m, but wake strength is scaled by a factor of 5. In the thick version, the structure length is set to 5m and scale factor is 1.

def track_with_tilt_thin(p_array_init, model, b, a=0.01, tiltX=0, tiltY=0):
totalL = 1 # 1m device
if model=='02':
wk_tv_kick = WakeTableParallelPlate_origin(
b=b, # distance from the plate in [m]
a=a, # half gap between plates in [m]
t=0.25 * 1e-3, # longitudinal gap in [m]
p=0.5 * 1e-3, # period of corrugation in [m]
length=totalL, # length of the corrugated structure in [m]
sigma=12e-6, # characteristic (rms) longitudinal beam size in [m]
orient="horz" # "horz" or "vert" plate orientation
)
wake = Wake()
elif model == '03':
wk_tv_kick = WakeTableParallelPlate3_origin(
b=b, # distance from the plate in [m]
a=a, # half gap between plates in [m]
t=0.25 * 1e-3, # longitudinal gap in [m]
p=0.5 * 1e-3, # period of corrugation in [m]
length=totalL, # length of the corrugated structure in [m]
sigma=12e-6, # characteristic (rms) longitudinal beam size in [m]
orient="horz" # "horz" or "vert" plate orientation
)
wake = Wake3()
elif model == '12':
wk_tv_kick = WakeTableParallelPlate(
b=b, # distance from the plate in [m]
a=a, # half gap between plates in [m]
t=0.25 * 1e-3, # longitudinal gap in [m]
p=0.5 * 1e-3, # period of corrugation in [m]
length=totalL, # length of the corrugated structure in [m]
sigma=12e-6, # characteristic (rms) longitudinal beam size in [m]
orient="horz" # "horz" or "vert" plate orientation
)
wake = Wake()
elif model == '13':
wk_tv_kick = WakeTableParallelPlate3(
b=b, # distance from the plate in [m]
a=a, # half gap between plates in [m]
t=0.25 * 1e-3, # longitudinal gap in [m]
p=0.5 * 1e-3, # period of corrugation in [m]
length=totalL, # length of the corrugated structure in [m]
sigma=12e-6, # characteristic (rms) longitudinal beam size in [m]
orient="horz" # "horz" or "vert" plate orientation
)
wake = Wake3()
elif model == 'N12': # same as '12', but use numerical implementation for coefficients
wk_tv_kick = WakeTableDechirperOffAxis(
b=b, # distance from the plate in [m]
a=a, # half gap between plates in [m]
t=0.25 * 1e-3, # longitudinal gap in [m]
p=0.5 * 1e-3, # period of corrugation in [m]
length=totalL, # length of the corrugated structure in [m]
sigma=12e-6, # characteristic (rms) longitudinal beam size in [m]
orient="horz" # "horz" or "vert" plate orientation
)
wake = Wake()
else:
raise ValueError('Wakefield model not found.')

# creation of wake object with parameters
# w_sampling - defines the number of the equidistant sampling points for the one-dimensional
# wake coefficients in the Taylor expansion of the 3D wake function.
wake.w_sampling = 500
wake.wake_table = wk_tv_kick
wake.step = 1 # step in Navigator.unit_step, dz = Navigator.unit_step * wake.step [m]
wake.factor = 5 # scale by 5 (to represent 5m)

m1 = Marker()
m2 = Marker()
lattice = (m1, Drift(l=1), m2, Drift(l=19)) # note the drift distance should be the same as the structure

lat = MagneticLattice(lattice, method={"global": SecondTM})
navi = Navigator(lat)

# add physics proccesses
navi.add_physics_proc(wake, m1, m2)

p_array = deepcopy(p_array_init)
# add tilt to the beam
p_array.rparticles[0, :] = p_array.x() + p_array.rparticles[4, :] * tiltX
p_array.rparticles[2, :] = p_array.y() + p_array.rparticles[4, :] * tiltY

p_array_before = deepcopy(p_array)

print("tracking with Wakes .... ")
tws_track, p_array = track(lat, p_array, navi)

return p_array_before, p_array

def track_with_tilt_thick(p_array_init, model, b, a=0.01, tiltX=0, tiltY=0):
totalL = 5 # 5m device
if model=='02':
wk_tv_kick = WakeTableParallelPlate_origin(
b=b, # distance from the plate in [m]
a=a, # half gap between plates in [m]
t=0.25 * 1e-3, # longitudinal gap in [m]
p=0.5 * 1e-3, # period of corrugation in [m]
length=totalL, # length of the corrugated structure in [m]
sigma=12e-6, # characteristic (rms) longitudinal beam size in [m]
orient="horz" # "horz" or "vert" plate orientation
)
wake = Wake()
elif model == '03':
wk_tv_kick = WakeTableParallelPlate3_origin(
b=b, # distance from the plate in [m]
a=a, # half gap between plates in [m]
t=0.25 * 1e-3, # longitudinal gap in [m]
p=0.5 * 1e-3, # period of corrugation in [m]
length=totalL, # length of the corrugated structure in [m]
sigma=12e-6, # characteristic (rms) longitudinal beam size in [m]
orient="horz" # "horz" or "vert" plate orientation
)
wake = Wake3()
elif model == '12':
wk_tv_kick = WakeTableParallelPlate(
b=b, # distance from the plate in [m]
a=a, # half gap between plates in [m]
t=0.25 * 1e-3, # longitudinal gap in [m]
p=0.5 * 1e-3, # period of corrugation in [m]
length=totalL, # length of the corrugated structure in [m]
sigma=12e-6, # characteristic (rms) longitudinal beam size in [m]
orient="horz" # "horz" or "vert" plate orientation
)
wake = Wake()
elif model == '13':
wk_tv_kick = WakeTableParallelPlate3(
b=b, # distance from the plate in [m]
a=a, # half gap between plates in [m]
t=0.25 * 1e-3, # longitudinal gap in [m]
p=0.5 * 1e-3, # period of corrugation in [m]
length=totalL, # length of the corrugated structure in [m]
sigma=12e-6, # characteristic (rms) longitudinal beam size in [m]
orient="horz" # "horz" or "vert" plate orientation
)
wake = Wake3()
elif model == 'N12': # same as '12', but use numerical implementation for coefficients
wk_tv_kick = WakeTableDechirperOffAxis(
b=b, # distance from the plate in [m]
a=a, # half gap between plates in [m]
t=0.25 * 1e-3, # longitudinal gap in [m]
p=0.5 * 1e-3, # period of corrugation in [m]
length=totalL, # length of the corrugated structure in [m]
sigma=12e-6, # characteristic (rms) longitudinal beam size in [m]
orient="horz" # "horz" or "vert" plate orientation
)
wake = Wake()
else:
raise ValueError('Wakefield model not found.')

# creation of wake object with parameters
# w_sampling - defines the number of the equidistant sampling points for the one-dimensional
# wake coefficients in the Taylor expansion of the 3D wake function.
wake.w_sampling = 500
wake.wake_table = wk_tv_kick
wake.step = 1 # step in Navigator.unit_step, dz = Navigator.unit_step * wake.step [m]
wake.factor = 1

m1 = Marker()
m2 = Marker()

lattice = (m1, Drift(l=5), m2, Drift(l=15))

lat = MagneticLattice(lattice, method={"global": SecondTM})
navi = Navigator(lat)

# add physics proccesses
navi.add_physics_proc(wake, m1, m2)

p_array = deepcopy(p_array_init)
# add tilt to the beam
p_array.rparticles[0, :] = p_array.x() + p_array.rparticles[4, :] * tiltX
p_array.rparticles[2, :] = p_array.y() + p_array.rparticles[4, :] * tiltY

p_array_before = deepcopy(p_array)

print("tracking with Wakes .... ")
tws_track, p_array = track(lat, p_array, navi)

return p_array_before, p_array

def plot_slices(p_array, Npart=5000, figsize=(18,10), ax=None, xlim=None, label=None):
"""
plot slice parameters of p_array
"""

slice_params = global_slice_analysis(p_array, Npart, smooth_param=0.1, filter_iter=10)
slice_params.s = slice_params.s*1e6

if ax is None:
f, ax = plt.subplots(3, 4, sharex=True, figsize=figsize, layout='constrained')

ax[0,0].plot(slice_params.s, slice_params.mx*1e6, label=label)
ax[0,0].set_ylabel(r'x ($\mu$m)')
ax[0,0].set_xlim(xlim)
if label is not None:
ax[0,0].legend()

ax[0,1].plot(slice_params.s, slice_params.mxp*1e6)
ax[0,1].set_ylabel(r'xp ($\mu$rad)')

ax[0,2].plot(slice_params.s, slice_params.sig_x*1e6)
ax[0,2].set_ylabel(r'$\sigma_x$ ($\mu$m)')

ax[0,3].plot(slice_params.s, slice_params.sig_xp*1e6)
ax[0,3].set_ylabel(r'$\sigma_{xp}$ ($\mu$rad)')

ax[1,0].plot(slice_params.s, slice_params.my*1e6)
ax[1,0].set_ylabel(r'y ($\mu$m)')

ax[1,1].plot(slice_params.s, slice_params.myp*1e6)
ax[1,1].set_ylabel(r'yp ($\mu$rad)')

ax[1,2].plot(slice_params.s, slice_params.sig_y*1e6)
ax[1,2].set_ylabel(r'$\sigma_y$ ($\mu$m)')
ax[1,2].set_xlabel(r's ($\mu$m)')

ax[1,3].plot(slice_params.s, slice_params.sig_yp*1e6)
ax[1,3].set_xlabel(r's ($\mu$m)')
ax[1,3].set_ylabel(r'$\sigma_{yp}$ ($\mu$rad)')

ax[2,0].plot(slice_params.s, slice_params.mp*100)
ax[2,0].set_xlabel(r's ($\mu$m)')
ax[2,0].set_ylabel('p (%)')

ax[2,1].plot(slice_params.s, slice_params.se/1e6)
ax[2,1].set_xlabel(r's ($\mu$m)')
ax[2,1].set_ylabel(r'$\sigma_{E}$ (MeV)')

ax[2,2].set_axis_off()
ax[2,3].set_axis_off()

Create particle array

A simple particle array at 14GeV with flattop current profile is generated.


# calculate twiss functions with initial twiss parameters
tws0 = Twiss()
tws0.E = 14 # in GeV
tws0.beta_x = 30
tws0.beta_y = 30
tws0.alpha_x = 0
tws0.alpha_y = 0

# calculate beam properties
emit = 0.5e-6
sigma_x = np.sqrt(tws0.beta_x * emit /(tws0.E*1e3/0.511))
sigma_xp = emit / (tws0.E*1e3/0.511)/sigma_x

l = 15e-6
sigma_t = l/3e8/(2*np.sqrt(3))
sigma_s = sigma_t *3e8
sigma_delta = 1.5e-4
print(sigma_x, sigma_xp)
print(sigma_s, sigma_t)
print(sigma_delta * tws0.E*1e3)
    2.3398717913595178e-05 7.79957263786506e-07
4.330127018922194e-06 1.4433756729740646e-14
2.1
np.random.seed(10)
p_array_init = generate_parray(sigma_x=sigma_x, sigma_px=sigma_xp, sigma_y=sigma_x, sigma_py=sigma_xp,
sigma_tau=7.5e-6, sigma_p=sigma_delta, chirp=0., charge=0.25e-09,
nparticles=200000, energy=tws0.E, tau_trunc=None, shape='Flat')

show_e_beam(p_array_init, nparts_in_slice=4000, figsize=(12, 9))
plt.show()

plot_slices(p_array_init)

png

png

Corrugated structure as dechirper

Here we use the numerical implementation of dechirper wakefield table. We set structure half gap to 0.5 mm and beam on axis (distance to plate 0.5mm). Here we only see the effect of longitudinal wake and transverse quadrupole wake.

_, p1 = track_with_tilt_thin(p_array_init, 'N12', b=0.5e-3, a=0.5e-3)

_, p2 = track_with_tilt_thin(p_array_init, 'N12', b=5e-3, a=5e-3)

f, ax = plt.subplots(3, 4, sharex=True, figsize=(18,10), layout='constrained')
plot_slices(p1, ax=ax, label='w/ dechirper')
plot_slices(p2, ax=ax, label='w/o dechirper')

plt.show()
    tracking with Wakes .... 
z = 20.0 / 20.0. Applied: aketracking with Wakes ....
z = 20.0 / 20.0. Applied: ake

png

Thick lens

_, p1 = track_with_tilt_thin(p_array_init, 'N12', b=0.5e-3, a=0.5e-3)

_, p2 = track_with_tilt_thick(p_array_init, 'N12', b=0.5e-3, a=0.5e-3)

f, ax = plt.subplots(3, 4, sharex=True, figsize=(18,10), layout='constrained')
plot_slices(p1, ax=ax, label='thin lens')
plot_slices(p2, ax=ax, label='thick lens')

plt.show()
    tracking with Wakes .... 
z = 20.0 / 20.0. Applied: aketracking with Wakes ....
z = 20.0 / 20.0. Applied: ake

png

Corrugated structure as a streaker

Here we use the numerical implementation of dechirper wakefield table. We set structure half gap to 10 mm and beam distance to plate 0.5mm. We can observe dechirping, streaking and focusing effect.

_, p1 = track_with_tilt_thin(p_array_init, 'N12', b=0.5e-3, a=10e-3)

_, p2 = track_with_tilt_thin(p_array_init, 'N12', b=5e-3, a=10e-3)


f, ax = plt.subplots(3, 4, sharex=True, figsize=(18,10), layout='constrained')
plot_slices(p1, ax=ax, label='w/ streaker')
plot_slices(p2, ax=ax, label='w/o streaker')


plt.show()
    tracking with Wakes .... 
z = 20.0 / 20.0. Applied: aketracking with Wakes ....
z = 20.0 / 20.0. Applied: ake

png

Thick lens

_, p1 = track_with_tilt_thin(p_array_init, 'N12', b=0.5e-3, a=10e-3)

_, p2 = track_with_tilt_thick(p_array_init, 'N12', b=0.5e-3, a=10e-3)

f, ax = plt.subplots(3, 4, sharex=True, figsize=(18,10), layout='constrained')
plot_slices(p1, ax=ax, label='thin lens')
plot_slices(p2, ax=ax, label='thick lens')

plt.show()
    tracking with Wakes .... 
z = 20.0 / 20.0. Applied: aketracking with Wakes ....
z = 20.0 / 20.0. Applied: ake

png

Compare analytical model with numerical waketable

Here we compare out analytical implementation of the waketable with the numerical implementation.

_, p1 = track_with_tilt_thin(p_array_init, 'N12', b=0.5e-3, a=10e-3)

_, p2 = track_with_tilt_thin(p_array_init, '12', b=0.5e-3, a=10e-3)

f, ax = plt.subplots(3, 4, sharex=True, figsize=(18,10), layout='constrained')
plot_slices(p1, ax=ax, label='Numer. waketable')
plot_slices(p2, ax=ax, label='Analy. waketable')

plt.show()
    tracking with Wakes .... 
z = 20.0 / 20.0. Applied: tracking with Wakes ....
z = 20.0 / 20.0. Applied: ake

png

Compare 2nd order Taylor expansion with 3rd order

It is necessary to check third order effect while the beam extension is rather large, here we assume a beam tilt in y, extending about 300um, and observe the third order effect mainly on the time-dependent focusing term, effect on the streaking and energy loss (spread) is small.

p0, p1 = track_with_tilt_thin(p_array_init, '12', b=0.5e-3, a=10e-3, tiltY=20)

_, p2 = track_with_tilt_thin(p_array_init, '13', b=0.5e-3, a=10e-3, tiltY=20)

f, ax = plt.subplots(3, 4, sharex=True, figsize=(18,10), layout='constrained')
plot_slices(p0, ax=ax)

f, ax = plt.subplots(3, 4, sharex=True, figsize=(18,10), layout='constrained')
plot_slices(p1, ax=ax, label='2nd order')
plot_slices(p2, ax=ax, label='3rd order')

plt.show()
    tracking with Wakes .... 
z = 20.0 / 20.0. Applied: tracking with Wakes ....
z = 20.0 / 20.0. Applied: ake3

png

png