Skip to main content

*This notebook was created by Sergey Tomin (sergey.tomin@desy.de). July 2019.

9. Accelerator based THz source

In this tutorial we will focus on another feature of the SR module (see PFS tutorial N1. Synchrotron radiation module), namely the calculation of coherent radiation. Details and limitation of the SR module in that mode can be found in G. Geloni, T. Tanikawa and S. Tomin, Dynamical effects on superradiant THz emission from an undulator. J. Synchrotron Rad. (2019). 26, 737-749

As a first step we consider a simple accelerator with the electron beam formation system (bunch compressor). Undulator parameters are chosen to generate radiation in THz range.

Contents

  1. Accelerator
  2. Coherent radiation from the beam

Accelerator

Accelerator includes an accelerator module and linearizer (third harmonic cavity) and a bunch compressor. IN other words we reproduce simplified version of the XFEL injector without the injector dogleg.

Lattice

# To activate interactive matplolib in notebook
# %matplotlib notebook
from ocelot import * 
from ocelot.gui import *
import time
    initializing ocelot...
#Initial Twiss parameters
tws0 = Twiss()
tws0.beta_x = 29.171
tws0.beta_y = 29.171
tws0.alpha_x = 10.955
tws0.alpha_y = 10.955
tws0.gamma_x = 4.148367385417024
tws0.gamma_y = 4.148367385417024
tws0.E = 0.005

# Drifts
D0 = Drift(l=3.52)
D1 = Drift(l=0.3459)
D2 = Drift(l=0.2043)
D3 = Drift(l=0.85)
D4 = Drift(l=0.202)
D5 = Drift(l=0.262)
D6 = Drift(l=2.9)
D8 = Drift(l=1.8)
D9 = Drift(l=0.9)
D11 = Drift(l=1.31)
D12 = Drift(l=0.81)
D13 = Drift(l=0.50)
D14 = Drift(l=1.0)
D15 = Drift(l=1.5)
D18 = Drift(l=0.97)
D19 = Drift(l=2.3)
D20 = Drift(l=2.45)


# Quadrupoles
q1 = Quadrupole(l=0.3, k1=-1.537886, eid='Q1')
q2 = Quadrupole(l=0.3, k1=1.435078, eid='Q2')
q3 = Quadrupole(l=0.2, k1=1.637, eid='Q3')
q4 = Quadrupole(l=0.2, k1=-2.60970, eid='Q4')
q5 = Quadrupole(l=0.2, k1=3.4320, eid='Q5')
q6 = Quadrupole(l=0.2, k1=-1.9635, eid='Q6')
q7 = Quadrupole(l=0.2, k1=-0.7968, eid='Q7')
q8 = Quadrupole(l=0.2, k1=2.7285, eid='Q8')
q9 = Quadrupole(l=0.2, k1=-3.4773, eid='Q9')
q10 = Quadrupole(l=0.2, k1=0.780, eid='Q10')
q11 = Quadrupole(l=0.2, k1=-1.631, eid='Q11')
q12 = Quadrupole(l=0.2, k1=1.762, eid='Q12')
q13 = Quadrupole(l=0.2, k1=-1.8, eid='Q13')
q14 = Quadrupole(l=0.2, k1=1.8, eid='Q14')
q15 = Quadrupole(l=0.2, k1=-1.8, eid='Q15')


# SBends
b1 = SBend(l=0.501471120927, angle=0.1327297047, e2=0.132729705, tilt=1.570796327, eid='B1')
b2 = SBend(l=0.501471120927, angle=-0.1327297047, e1=-0.132729705, tilt=1.570796327, eid='B2')
b3 = SBend(l=0.501471120927, angle=-0.1327297047, e2=-0.132729705, tilt=1.570796327, eid='B3')
b4 = SBend(l=0.501471120927, angle=0.1327297047, e1=0.132729705, tilt=1.570796327, eid='B4')

# Cavitys
c1 = Cavity(l=1.0377, v=0.01815975, freq=1300000000.0, eid='C1')
c3 = Cavity(l=0.346, v=0.0024999884, phi=180.0, freq=3900000000.0, eid='C3')


und = Undulator(lperiod=0.2, nperiods=20, Kx=30)
start_und = Marker()
end = Marker()
# Lattice
cell = (D0, c1, D1, c1, D1, c1, D1, c1, D1, c1, D1, c1, D1, c1, D1, c1, D2, q1, D3,
q2, D4, c3, D5, c3, D5, c3, D5, c3, D5, c3, D5, c3, D5, c3, D5, c3, D6, q3, D6,
q4, D8, q5, D9, q6, D9, q7, D11, q8, D12, q9, D13, b1, D14, b2, D15, b3, D14, b4, D13,
q10, D9, q11, D18, q12, D19, q13, D19, q14, D19, q15, D20, start_und, und, D14, end)

lat = MagneticLattice(cell, stop=start_und)

tws = twiss(lat, tws0)
plot_opt_func(lat, tws, legend=False, fig_name=100)
plt.show()

png

Also we can found the main parameters of the chicane with chicane_RTU(yoke_len, dip_dist, r, type)

from ocelot.utils import *
R56, T566, U5666, Sref = chicane_RTU(yoke_len=0.5, dip_dist=D14.l * np.cos(b1.angle), r=b1.l/b1.angle, type="c")
print("bunch compressor R56 = ", R56, " m")
    bunch compressor R56 =  -0.04751528087514777  m

Simple compression scenario

We consider a simple compression scheme with an accelerator module and third harmonic linearizer and a magnetic chicane. To have full picture of the compression techniques, I would recommend:

To compress a bunch longitudinally, the time of flight through some section must be shorter for the tail of the bunch than it is for the head. The usual technique starts out by introducing a correlation between the longitudinal position of the particles in the bunch and their energy using a radio frequency (RF) accelerating system. At the end of a linac which induces an energy chirp δ=1E0dEds\delta' = \frac{1}{E_0}\frac{dE}{ds}, the mapping of longitudinal position and relative energy deviation of an electron is

s1=s0δ1=δs0+δi\begin{split} s_1 &= s_0 \\ \delta_1 &= \delta' s_0 + \delta_{i} \end{split}

where δi=ΔEiE0\delta_{i} = \frac{\Delta E_i}{E_0} is not correlated energy spread along the bunch length.

The transformation of the longitudinal coordinate in compressor BC can be approximated by the expression up to first order:

s2=s1R56δ1=(1δR56)s0+R56δiδ2=δ1\begin{split} s_2 &= s_1 - R_{56}\delta_1 = (1 - \delta' R_{56}) s_0 + R_{56}\delta_{i}\\ \delta_2 &= \delta_1 \end{split}

Taking an ensemble average over all particles in the bunch and by definition <s0δi>=0<s_0 \delta_{i}> = 0, the second moment of the distribution σs0=<s22>1/2\sigma_{s_0} = <s_2^2>^{1/2} is:

σs2=(1δR56)2σs0+R562σδi2\sigma_{s_2} = \sqrt{ (1 - \delta' R_{56})^2 \sigma_{s_0} + R_{56}^2\sigma_{\delta_{i}}^2 }

Compression factor is :

C=σs0σs2C = \frac{\sigma_{s_0}}{ \sigma_{s_2}}

Suppose, uncorrelated energy spread is small and we chose δ=10\delta' = -10 and R56=0.048R_{56} = -0.048 m as we calculated above, in that case the compression factor after the chicane is

C=11δR56=1.9C = \frac{1}{1 - \delta' R_{56}} = 1.9

The non-linearities of both the accelerating RF fields and the longitudinal dispersion can distort the longitudinal phase space. A higher harmonic RF system can be used to compensate the non-linearities of the fundamental frequency system and the higher order longitudinal dispersion in the magnetic chicanes. To linearize longitudinal phase space, a working point for RF phases and amplitudes must be found for the fundamental frequency and the nn-th harmonic system (n = 3 for the European XFEL).

The relation between the normalized RF amplitudes

[10100k0nkk20(nk)20)0k30(nk)3][V1cos(ϕ1)V1sin(ϕ1)V13cos(ϕ13)V13sin(ϕ13)]=1e[E1E0E1δ2E0δ0E1δ2E0δ0E1δ2E0δ0]\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & -k & 0 & -n k \\ -k^2 & 0 & -(n k )^2 & 0) \\ 0 & k^3 & 0 &(n k )^3 \end{bmatrix} \begin{bmatrix} V_1 \cos(\phi_1)\\ V_1 \sin(\phi_1)\\ V_{13} \cos(\phi_{13}) \\ V_{13} \sin(\phi_{13}) \\ \end{bmatrix} = \frac{1}{e} \begin{bmatrix} E_1 - E_0\\ E_1\delta_2' - E_0 \delta_0'\\ E_1\delta_2'' - E_0 \delta_0''\\ E_1\delta_2''' - E_0 \delta_0'''\\ \end{bmatrix}

In our case we assume initial beam energy E0=5E_0 = 5 MeV and δ0=δ0=δ0=0\delta_0' = \delta_0'' = \delta_0''' = 0.

And final energy we chose E1=130E_1 = 130 MeV and δ2=10\delta_2' = -10 with δ2=δ2=0\delta_2'' = \delta_2''' = 0 So, our vector on the right side will be

[E1E0E1δ2E0δ0E1δ2E0δ0E1δ2E0δ0]=[125130000]\begin{bmatrix} E_1 - E_0\\ E_1\delta_2' - E_0 \delta_0'\\ E_1\delta_2'' - E_0 \delta_0''\\ E_1\delta_2''' - E_0 \delta_0'''\\ \end{bmatrix} = \begin{bmatrix} 125\\ -1300 \\ 0\\ 0\\ \end{bmatrix}

Note: We calculated R56R_{56} only for the chicane and did not take into account undulator.

In our case undulator has high K parameter

R56=Luγ(1+K2/2)0.028mR_{56} = -\frac{L_u}{\gamma}(1 + K^2/2) \approx -0.028 \quad m

So, total compression after undulator will be

C=11δR56=4.1C = \frac{1}{1 - \delta R_{56}} = 4.1
import scipy.optimize

# M*a = b
k = 2*np.pi/3e8*1.3e9
n = 3
M = np.array([[1, 0, 1, 0],
[0, -k, 0, -(n*k)],
[-k**2, 0, -(n*k)**2, 0],
[0, k**3, 0, (n*k)**3]])


b = np.array([125, -1300, 0, 0])
def F(x):
V1 = x[0]
phi1 = x[1]
V13 = x[2]
phi3 = x[3]
V = np.array([V1*np.cos(phi1*np.pi/180),
V1*np.sin(phi1*np.pi/180),
V13*np.cos(phi3*np.pi/180),
V13*np.sin(phi3*np.pi/180)]).T
return np.dot(M, V) - b

x = scipy.optimize.broyden1(F, [150, 10, 20, 190])
V1, phi1, V13, phi13 = x
print("V1 = ", V1, " MeV")
print("phi1 = ", phi1)
print("V13 = ", V13, " MeV")
print("phi13 = ", phi13)
    V1 =  150.53461560292047  MeV
phi1 = 20.905449650430196
V13 = 15.751142632839656 MeV
phi13 = 187.25608275658084

Now we update cavities parameters in the lattice

# type new parameters, 
# NOTE in OCELOT cavity voltage in [GeV] so to traslate calculated voltage we need factor 1/1000
# and we have 8 cavities for main RF module and linearizer
c1.v = V1/8/1000
c1.phi = phi1
c3.v = V13/8/1000
c3.phi = phi13

# and update lattice
lat.update_transfer_maps()
    <ocelot.cpbd.magnetic_lattice.MagneticLattice at 0x168570ac0>

Generate electron beam

np.random.seed(10)
parray = generate_parray(sigma_x=0.0001, sigma_px=2e-05, sigma_y=None, sigma_py=None,
sigma_tau=0.001, sigma_p=0.0001, chirp=0.0, charge=0.5e-09,
nparticles=300, energy=0.005, tau_trunc=None)

show_e_beam(parray,nparts_in_slice=50,smooth_param=0.1, nbins_x=50, nbins_y=50, nfig=10)
plt.show()

png

Tracking up to undulator

navi = Navigator(lat)
tws_track, parray = track(lat, parray, navi)
show_e_beam(parray, nfig=201)
plt.show()
    z = 52.547084483708005 / 52.54708448370802. Applied: 

png

parray.E
    0.13000000268915646

Coherent radiation from the beam

from ocelot.rad import *
lat = MagneticLattice(cell, start=start_und, stop=end)

screen = Screen()
screen.z = 1000.0
screen.size_x = 15
screen.size_y = 15
screen.nx = 1
screen.ny = 1
screen.start_energy = 0.001 # eV
screen.end_energy = 3e-3 # eV
screen.num_energy = 1001

# to estimate radiation properties we need to create beam class

beam = Beam()
beam.E = 0.13

# NOTE: this function just estimate spontanious emmision
print_rad_props(beam, K=und.Kx, lu=und.lperiod, L=und.l, distance=screen.z)

    ********* ph beam ***********
Ebeam : 0.13 GeV
K : 30
B : 1.6065 T
lambda : 6.96835E-04 m
Eph : 1.77925E-03 eV
1/gamma : 3930.7605 um
sigma_r : 5941.5531 um
sigma_r' : 9332.9698 urad
Sigma_x : 5941.5531 um
Sigma_y : 5941.5531 um
Sigma_x' : 9332.9698 urad
Sigma_y' : 9332.9698 urad
H. spot size : 9332.9717 / 9.333 mm/mrad
V. spot size : 9332.9717 / 9.333 mm/mrad
I : 0.0 A
Nperiods : 20.0
distance : 1000.0 m
flux tot : 0.00E+00 ph/sec/0.1%BW
flux density : 0.00E+00 ph/sec/mrad^2/0.1%BW; 0.00E+00 ph/sec/mm^2/0.1%BW
brilliance : 0.00E+00 ph/sec/mrad^2/mm^2/0.1%BW
start = time.time()
screen_i = coherent_radiation(lat, screen, parray, accuracy=1)
print()
print("time exec: ", time.time() - start, " s")
show_flux(screen_i, unit="mm", title="")
    n: 299 / 299
time exec: 100.35891485214233 s

png

Beam after undulator.

as you can notice, the beam was compressed in the undulator in approximatly in two times as was calculated in the Simple compression scenario

show_e_beam(parray,  nfig=203)
plt.show()

png

Electron trajectories

In some cases, it is worth checking the trajectory of the particle used to calculate the radiation. For this purpose, a special object BeamTraject is attached to the object screen after radiation calculation:

screen.beam_traj = BeamTraject()

To retrieve trajectory you need to specify number of electron what you are interested, for example:

x = screen.beam_traj.x(n=0)

n = 100
x = screen.beam_traj.x(n)
y = screen.beam_traj.y(n)
z = screen.beam_traj.z(n)
plt.title("trajectory of " + str(n)+"th particle")
plt.plot(z, x, label="X")
plt.plot(z, y, label="Y")
plt.xlabel("Z [m]")
plt.ylabel("X/Y [m]")
plt.legend()
plt.show()

png