Skip to main content

This notebook was created by Sergey Tomin (sergey.tomin@desy.de) and Igor Zagorodnov for Workshop: Designing future X-ray FELs. Updated September 2020.

4. Wakefields

  • Wake table format
  • Wakefields of a Beam near a Single Plate in a Flat Dechirper
  • Crosscheck with analytics: Dipole kick

Chirper.

Influence of corrugated structure on the electron beam. This example based on the work: I. Zagorodnov, G. Feng, T. Limberg. Corrugated structure insertion for extending the SASE bandwidth up to 3% at the European XFEL.

Gerometry of the corrugated structure. The blue ellipse represents an electron beam propagating along the z axis.

png

Wakefields

In order to take into account the impact of the wake field on the beam the longitudinal wake function of point charge through the second order Taylor expansion is used. In general case it uses 13 one-dimensional functions to represent the longitudinal component of the wake function for arbitrary sets of the source and the wittness particles near to the reference axis. The wake field impact on the beam is included as series of kicks.

The implementation of the wakefields follows closely the approach described in:

This example will cover the following topics:

  • Initialization of the wakes and the places of their applying
  • tracking of second order with wakes

Requirements

  • beam_chirper.ast - input file, initial beam distribution in ASTRA format (was obtained from s2e simulation performed with ASTRA and CSRtrack).
  • wake_vert_1m.txt - wake table of the vertical corrugated structure (was calculated with ECHO)
  • wake_hor_1m.txt - wake table of the vertical corrugated structure (was calculated with ECHO)

Wake Table format

We use the same format of the wakes as implemented in ASTRA and the description of the format can be found in M. Dohlus, K. Floettmann, C. Henning, Fast particle tracking with wake fields, Report No. DESY 12-012, 2012.

Second order Taylor expansion of the longitudinal wake (wzw_z) in the transverse coordinates

wz(xs,ys,xo,yo,s)=[1xsysxoyo]T[h00(s)h01(s)h02(s)h03(s)h04(s)0h11(s)h12(s)h13(s)h14(s)0h12(s)h11(s)h23(s)h24(s)0h13(s)h23(s)h33(s)h34(s)0h14(s)h24(s)h34(s)h33(s)][1xsysxoyo];w_z(x_s, y_s, x_o, y_o, s) = \begin{bmatrix} 1 \\ x_s\\ y_s\\ x_o \\ y_o \end{bmatrix}^T \begin{bmatrix} h_{00}(s) & h_{01}(s) & h_{02}(s) & h_{03}(s) & h_{04}(s) \\ 0 & h_{11}(s) & h_{12}(s) & h_{13}(s) & h_{14}(s)\\ 0 & h_{12}(s) & -h_{11}(s) & h_{23}(s) & h_{24}(s) \\ 0 & h_{13}(s) & h_{23}(s) & h_{33}(s) & h_{34}(s)\\ 0 & h_{14}(s) & h_{24}(s) & h_{34}(s) & -h_{33}(s) \end{bmatrix} \begin{bmatrix} 1 \\ x_s\\ y_s\\ x_o \\ y_o \end{bmatrix} ;

where xsx_s and ysy_s transverse coordinates of the source particle and xox_o and yoy_o are transverse coordinates of the observer, ss is distance between source and observer. Thus to describe longitudinal wake we need 13 functions hαβh_{\alpha \beta}.

The transverse components are uniquely related to the longitudinal wake by causality and Panofsky-Wenzel-Theorem.

For each of these coefficients, we use the representation in O. Zagorodnova, T. Limberg, Impedance budget database for the European XFEL

h(s)=w0(s)+1C+Rcδ(s)+cs[Lcδ(s)+w1(s)]h(s) = w_0(s) + \frac{1}{C} + R c\delta(s) + c\frac{\partial}{\partial s}\left[L c \delta(s) + w_1 (s) \right]

where w0(s)w_0(s), w1(s)w_1(s) are nonsingular functions, which can be tabulated easily, and constants RR, LL, and CC have the meaning of resistivity, inductance, and capacitance, correspondingly. The functions w0(s)w_0(s), w1(s)w_1(s) can be represented by table, e.g. [sis_i, w0iw_0^i].

Now we can describe whole table how it is saved in a file.

NhN_h00
Nw0N_{w_0}Nw1N_{w_1}
R,[Us]R,\: [Us]L,[Us2]L,\: [Us^2]
C,[1/Us]C,\: [1/Us]10α+β10\alpha + \beta
s1,[m]s_1,\: [m]w0(s1),[U]w_0(s_1),\: [U]
s2,[m]s_2,\: [m]w0(s2),[U]w_0(s_2),\: [U]
......
sNw0,[m]s_{N_{w_0}},\: [m]w0(sNw0),[U]w_0(s_{N_{w_0}}),\: [U]
s1,[m]s_1,\: [m]w1(s1),[U]w_1(s_1),\: [U]
s2,[m]s_2,\: [m]w1(s2),[U]w_1(s_2),\: [U]
......
sNw1,[m]s_{N_{w_1}},\: [m]w1(sNw1),[U]w_1(s_{N_{w_1}}),\: [U]
Nw0N_{w_0}Nw1N_{w_1}
R,[Us]R,\: [Us]L,[Us2]L,\: [Us^2]
C,[1/Us]C,\: [1/Us]10α+β10\alpha + \beta
s1,[m]s_1,\: [m]w0(s1),[U]w_0(s_1),\: [U]
......
Nw0N_{w_0}Nw1N_{w_1}
R,[Us]R,\: [Us]L,[Us2]L,\: [Us^2]
C,[1/Us]C,\: [1/Us]10α+β10\alpha + \beta
s1,[m]s_1,\: [m]w0(s1),[U]w_0(s_1),\: [U]
......

In the very first line, NhN_h is number of hαβ(s)h_{\alpha\beta}(s) functions in the table. After that, a typical table repeated NhN_h times describing every hαβ(s)h_{\alpha\beta}(s) function.

Every table starts with Nw0N_{w_0} and Nw1N_{w_1} which are number of points of w0(si)w_0(s_i) and w1(si)w_1(s_i) functions. Next two lines are included RR, LL, CC and entry 10α+β10\alpha + \beta which describes the subscript of the auxiliary function hαβ(s)h_{\alpha\beta}(s). Next Nw0N_{w_0} lines described function w0(s)w_0(s), and after that next Nw1N_{w_1} lines described function w1(s)w_1(s).

And to describe next hαβ(s)h_{\alpha\beta}(s) we repeat procedure.

The unit UU is V/(As)V/(A\cdot s) for αβ=00\alpha\beta = 00, V/(Asm)V/(A\cdot s \cdot m) for αβ=01,...04\alpha\beta = 01, ... 04 and V/(Asm2)V/(A\cdot s \cdot m^2) for all other coefficients.

Import of modules

# the output of plotting commands is displayed inline within frontends, 
# directly below the code cell that produced it
%matplotlib inline

# this python library provides generic shallow (copy) and deep copy (deepcopy) operations
from copy import deepcopy
import time

# import from Ocelot main modules and functions
from ocelot import *

# import from Ocelot graphical modules
from ocelot.gui.accelerator import *

# load beam distribution
# this function convert Astra beam distribution to Ocelot format
# - ParticleArray. ParticleArray is designed for tracking.
# in order to work with converters we have to import
# specific module from ocelot.adaptors
from ocelot.adaptors.astra2ocelot import *

Layout of the corrugated structure insertion. Create Ocelot lattice

D00m25 = Drift(l = 0.25)
D01m = Drift(l = 1)
D02m = Drift(l = 2)

# Create markers for defining places of the wakes applying
w1_start = Marker()
w1_stop = Marker()

w2_start = Marker()
w2_stop = Marker()

w3_start = Marker()
w3_stop = Marker()

w4_start = Marker()
w4_stop = Marker()

w5_start = Marker()
w5_stop = Marker()

w6_start = Marker()
w6_stop = Marker()
# quadrupoles
Q1 = Quadrupole(l = 0.5, k1 = 0.215)

# lattice
lattice = (D01m, w1_start, D02m, w1_stop, w2_start, D02m, w2_stop,
w3_start, D02m, w3_stop, D00m25, Q1, D00m25,
w4_start, D02m, w4_stop, w5_start, D02m, w5_stop,
w6_start, D02m, w6_stop, D01m)

# creation MagneticLattice
lat = MagneticLattice(lattice, method={"global": SecondTM})

# calculate twiss functions with initial twiss parameters
tws0 = Twiss()
tws0.E = 14 # in GeV
tws0.beta_x = 22.5995
tws0.beta_y = 22.5995
tws0.alpha_x = -1.4285
tws0.alpha_y = 1.4285
tws = twiss(lat, tws0, nPoints=None)
# ploting twiss paramentrs.
plot_opt_func(lat, tws, top_plot=["Dx"], fig_name="i1", legend=False)
plt.show()

png

Load beam file

# load and convert ASTRA file to OCELOT beam distribution
# p_array_init = astraBeam2particleArray(filename='beam_chirper.ast')

# save ParticleArray to compresssed numpy array
# save_particle_array("chirper_beam.npz", p_array_init)
p_array_init = load_particle_array("chirper_beam.npz")

plt.plot(-p_array_init.tau()*1000, p_array_init.p(), "r.")
plt.grid(True)
plt.xlabel(r"$\tau$, mm")
plt.ylabel(r"$\frac{\Delta E}{E}$")
plt.show()

png

Initialization of the wakes and the places of their applying

from ocelot.cpbd.wake3D import *

# load wake tables of corrugated structures
wk_vert = WakeTable('wake_vert_1m.txt')
wk_hor = WakeTable('wake_hor_1m.txt')

# creation of wake object with parameters
wake_v1 = Wake()
# w_sampling - defines the number of the equidistant sampling points for the one-dimensional
# wake coefficients in the Taylor expansion of the 3D wake function.
wake_v1.w_sampling = 500
wake_v1.wake_table = wk_vert
wake_v1.step = 1 # step in Navigator.unit_step, dz = Navigator.unit_step * wake.step [m]

wake_h1 = Wake()
wake_h1.w_sampling = 500
wake_h1.wake_table = wk_hor
wake_h1.step = 1

wake_v2 = deepcopy(wake_v1)

wake_h2 = deepcopy(wake_h1)

wake_v3 = deepcopy(wake_v1)

wake_h3 = deepcopy(wake_h1)

Add the wakes in the lattice

Navigator defines step (dz) of tracking and which, if it exists, physical process will be applied on each step. In order to add collective effects (Space charge, CSR or wake) method add_physics_proc() must be run.

Method:

  • Navigator.add_physics_proc(physics_proc, elem1, elem2)
    • physics_proc - physics process, can be CSR, SpaceCharge or Wake,
    • elem1 and elem2 - first and last elements between which the physics process will be applied.

Also must be define unit_step in [m] (by default 1 m). unit_step is minimal step of tracking for any collective effect. For each collective effect must be define number of unit_steps so step of applying physics process will be

dz = unit_step*step [m]

navi = Navigator(lat)

# add physics proccesses
navi.add_physics_proc(wake_v1, w1_start, w1_stop)
navi.add_physics_proc(wake_h1, w2_start, w2_stop)
navi.add_physics_proc(wake_v2, w3_start, w3_stop)
navi.add_physics_proc(wake_h2, w4_start, w4_stop)
navi.add_physics_proc(wake_v3, w5_start, w5_stop)
navi.add_physics_proc(wake_h3, w6_start, w6_stop)

# definiing unit step in [m]
navi.unit_step = 0.2

# deep copy of the initial beam distribution
p_array = deepcopy(p_array_init)
print("tracking with Wakes .... ")
start = time.time()
tws_track, p_array = track(lat, p_array, navi)
print("\n time exec:", time.time() - start, "sec")
    tracking with Wakes .... 
z = 15.0 / 15.0. Applied: 5.0. Applied: Wake
time exec: 1.3916778564453125 sec

Longitudinal beam distribution

tau0 = p_array_init.tau()
p0 = p_array_init.p()

tau1 = p_array.tau()
p1 = p_array.p()
plt.figure(1)
plt.plot(-tau0*1000, p0, "r.", -tau1*1000, p1, "b.")
plt.legend(["before", "after"], loc=4)
plt.grid(True)
plt.xlabel(r"$\tau$, mm")
plt.ylabel(r"$\frac{\Delta E}{E}$")
plt.show()

png

Beam distribution

# by default the beam head on the left side
show_e_beam(p_array, figsize=(8,6))
plt.show()

png

# plotting twiss parameters.
plot_opt_func(lat, tws_track, top_plot=["Dx"], fig_name="i1", legend=False)
plt.show()

png

Wakefields of a Beam near a Single Plate in a Flat Dechirper

For some FEL applications, e.g. a two-color scheme, only one flat corrugated structure can be used to get a correlated transverse kick along the electron bunch. In that case, we can use analytical approach from I. Zagorodnov, G. Feng, T. Limberg. Corrugated structure insertion for extending the SASE bandwidth up to 3% at the European XFEL and K. Bane, G. Stupakov, and I. Zagorodnov, Wakefields of a Beam near a Single Plate in a Flat Dechirper to calculate described above the wakefield tables.

warning

Due to the use of assumptions in the analytical approach, a transverse kick is infinite if the electron beam distance to the plate wall is zero.

A small note about transverse modes

Let's look at the wakefield components. Let's start with the expression above:

wz(xs,ys,xo,yo,s)=[1xsysxoyo]T[h00(s)h01(s)h02(s)h03(s)h04(s)0h11(s)h12(s)h13(s)h14(s)0h12(s)h11(s)h23(s)h24(s)0h13(s)h23(s)h33(s)h34(s)0h14(s)h24(s)h34(s)h33(s)][1xsysxoyo];w_z(x_s, y_s, x_o, y_o, s) = \begin{bmatrix} 1 \\ x_s\\ y_s\\ x_o \\ y_o \end{bmatrix}^T \begin{bmatrix} h_{00}(s) & h_{01}(s) & h_{02}(s) & h_{03}(s) & h_{04}(s) \\ 0 & h_{11}(s) & h_{12}(s) & h_{13}(s) & h_{14}(s)\\ 0 & h_{12}(s) & -h_{11}(s) & h_{23}(s) & h_{24}(s) \\ 0 & h_{13}(s) & h_{23}(s) & h_{33}(s) & h_{34}(s)\\ 0 & h_{14}(s) & h_{24}(s) & h_{34}(s) & -h_{33}(s) \end{bmatrix} \begin{bmatrix} 1 \\ x_s\\ y_s\\ x_o \\ y_o \end{bmatrix} ;

Expand the result of the multiplication:

wz(xs,ys,xo,yo,s)=h00(s)+h03(s)xo+h33(s)xo2+h01(s)xs+2h13(s)xoxs+h11(s)xs2+h04(s)yo+2h34(s)xoyo+2h14(s)xsyoh33(s)yo2+h02(s)ys+2h23(s)xoys+2h12(s)xsys+2h24(s)yoysh11(s)ys2w_z(x_s, y_s, x_o, y_o, s) = h_{00}(s) + h_{03}(s) x_o + h_{33}(s) x_o^2 + h_{01}(s) x_s + 2 h_{13}(s) x_o x_s + h_{11}(s) x_s^2 + h_{04}(s) y_o + \\ 2 h_{34}(s) x_o y_o + 2 h_{14}(s) x_s y_o - h_{33}(s) y_o^2 + h_{02}(s) y_s + 2 h_{23}(s) x_o y_s + \\ 2 h_{12}(s) x_s y_s + 2 h_{24}(s) y_o y_s - h_{11}(s) y_s^2

Using Panofsky-Wenzel-Theorem the transverse components are:

swy(xs,ys,xo,yo,s)=yowz(xs,ys,xo,yo,s)=(h04(s)+2h34(s)xo+2h14(s)xs2h33(s)yo+2h24(s)ys)\frac{\partial}{\partial s}w_y(x_s, y_s, x_o, y_o, s) = -\frac{\partial}{\partial y_o}w_z(x_s, y_s, x_o, y_o, s) = -(h_{04}(s) + 2 h_{34}(s) x_o + 2 h_{14}(s) x_s - 2 h_{33}(s) y_o + 2 h_{24}(s) y_s)

where h04(s)-h_{04}(s) monopole transverse component, h24(s)-h_{24}(s) - dipole component, h33(s)h_{33}(s) - quadrupole component,

swx(xs,ys,xo,yo,s)=xowz(xs,ys,xo,yo,s)=(h03(s)+2h33(s)xo+2h13(s)xs+2h34(s)yo+2h23(s)ys)\frac{\partial}{\partial s}w_x(x_s, y_s, x_o, y_o, s) = -\frac{\partial}{\partial x_o}w_z(x_s, y_s, x_o, y_o, s) = -(h_{03}(s) + 2 h_{33}(s) x_o + 2 h_{13}(s) x_s + 2 h_{34}(s) y_o + 2 h_{23}(s) y_s)

where h03(s)h_{03}(s) - monopole transverse component, h13(s)-h_{13}(s) - dipole component, h33(s)-h_{33}(s) - quadrupole component.

Integral forms:

wy(xs,ys,xo,yo,s)=syowz(xs,ys,xo,yo,s)dsw_y(x_s, y_s, x_o, y_o, s) = - \int_{-\infty}^s{\frac{\partial}{\partial y_o}w_z(x_s, y_s, x_o, y_o, s') ds'} wx(xs,ys,xo,yo,s)=sxowz(xs,ys,xo,yo,s)dsw_x(x_s, y_s, x_o, y_o, s) = - \int_{-\infty}^s{\frac{\partial}{\partial x_o}w_z(x_s, y_s, x_o, y_o, s') ds'}
# create a simple lattice MagneticLattice
m1 = Marker()
m2 = Marker()
# quadrupoles
Q1 = Quadrupole(l = 0.5, k1 = 0.215)

lattice = (Drift(l=1), m1, Drift(l=1), m2, Drift(l=2), Q1, Drift(l=2))

lat = MagneticLattice(lattice, method={"global": SecondTM})

Describe corrugated structure and add wake to the lattice

# description of args can be also be shown with Shift+Tab 
sigma = np.std(p_array.tau())
print("RMS long beam size: ", sigma * 1e6, " um")
wk_tv_kick = WakeTableDechirperOffAxis(b=500*1e-6, # distance from the plate in [m]
a=0.01, # half gap between plates in [m]
width=0.02, # width of the corrugated structure in [m]
t=0.25*1e-3, # longitudinal gap in [m]
p=0.5*1e-3, # period of corrugation in [m]
length=1, # length of the corrugated structure in [m]
sigma=12e-6, # characteristic (rms) longitudinal beam size in [m]
orient="horz") # "horz" or "vert" plate orientation

# creation of wake object with parameters
wake = Wake()
# w_sampling - defines the number of the equidistant sampling points for the one-dimensional
# wake coefficients in the Taylor expansion of the 3D wake function.
wake.w_sampling = 500
wake.wake_table = wk_tv_kick
wake.step = 1 # step in Navigator.unit_step, dz = Navigator.unit_step * wake.step [m]

navi = Navigator(lat)

# add physics proccesses
navi.add_physics_proc(wake, m1, m2)
    RMS long beam size:  12.073257604557314  um

Track the beam through the lattice

# deep copy of the initial beam distribution 
p_array = deepcopy(p_array_init)
print("tracking with Wakes .... ")
start = time.time()
tws_track, p_array = track(lat, p_array, navi)
print("\n time exec:", time.time() - start, "sec")
    tracking with Wakes .... 
z = 6.5 / 6.5. Applied: Wake
time exec: 0.12894392013549805 sec
# by default the beam head on the left side
show_e_beam(p_array, figsize=(8,6))
plt.show()

png

Crosscheck with analytics: Dipole kick

We are going to crosscheck our current implementation with formulas from K. Bane, G. Stupakov, and I. Zagorodnov, Wakefields of a Beam near a Single Plate in a Flat Dechirper:

wyd(s)=2b3s0yd[1(1+ss0yd)es/s0yd]w_{yd}(s) = \frac{2}{b^3}s_{0yd} \left[ 1 - \left(1 + \sqrt{\frac{s}{s_{0yd}}}\right) e^{- \sqrt{s/s_{0yd}}} \right]

with

s0yd=8b2t/(9πα2p2)s_{0yd} = 8b^2t/(9\pi \alpha^2 p^2)

Let's take the same parameters from example above:

Period, p = 0.5 mm

Longitudinal gap, t = 0.25 mm

Distance from the plate, b = 500 μ\mum

α=10.465t/p0.07t/p\alpha = 1 - 0.465 \sqrt{t/p} - 0.07 t/p

p = 0.5e-3 # period
t = 0.25e-3 # Longitudinal gap
b = 500e-6 # Distance from the plate

alpha = 1 - 0.465 * np.sqrt(t/p) - 0.07 * t/p

print("alpha = ", alpha)
s0 = 8*b**2 * t / (9 * np.pi * alpha**2 * p**2)
print("s0 = ", s0*1e6, " [um]")
    alpha =  0.6361953467482554
s0 = 174.765875517375 [um]

Dipole wake

s = np.linspace(0, 100, num=100) *1e-6
w = lambda s: 2./b**3 * s0 * (1 - (1 + np.sqrt(s/s0)) * np.exp(- np.sqrt(s/s0))) * Z0 * speed_of_light / (4 * np.pi)

MV = 1e6
nC = 1e-9
plt.plot(s*1e6, np.array([w(si) for si in s])*nC/MV )
plt.xlabel("s [um]")
plt.ylabel("Wd [MV/(nC m)]")
plt.show()

png

Convolution wake with the beam current

def convolve_beam(current, wake):
"""
convolve wake with beam current

:param current: current[:, 0] - s in [m], current[:, 1] - current in [A]. The beam head is on the left
:param wake: wake function in form: wake(s)
:return: wake_kick[:, 0] - s in [m], wake_kick[:, 1] - V
"""
s_shift = current[0, 0]
current[:, 0] -= s_shift
s = current[:, 0]

step = (s[-1] - s[0]) / (len(s) - 1)
q = current[:, 1] / speed_of_light

w = np.array([wake(si) for si in s])

wake = np.convolve(q, w) * step
s_new = np.cumsum(np.ones(len(wake))) * step
wake_kick = np.vstack((s_new, wake))
return wake_kick.T

I = s_to_cur(p_array.tau(), 0.01 * np.std(p_array.tau()), np.sum(p_array.q_array), speed_of_light)

dipole_kick = convolve_beam(I, w)

fig, ax1 = plt.subplots()
color = 'tab:red'
ax1.set_xlabel('s [mm]')
ax1.set_ylabel('Wake [MV]', color=color)
ax1.plot(dipole_kick[:, 0] * 1e3, dipole_kick[:, 1] * 1e-6, color=color)
ax1.tick_params(axis='y', labelcolor=color)

ax2 = ax1.twinx()
color = 'tab:blue'
ax2.set_ylabel('I [kA]', color=color)
ax2.plot(I[:, 0] * 1e3, I[:, 1] * 1e-3, color=color)
ax2.tick_params(axis='y', labelcolor=color)
plt.show()

png

length = 1 # corrugated structure in [m]

p_array = deepcopy(p_array_init)

z = p_array.tau()
ind_z_sort = np.argsort(z)
z_sort = z[ind_z_sort]

wd = np.interp(z_sort - z_sort[0], dipole_kick[:, 0], dipole_kick[:, 1])

delta_E_y = wd * 1e-9 * length
pc_ref = np.sqrt(p_array.E ** 2 / m_e_GeV ** 2 - 1) * m_e_GeV
delta_py = delta_E_y / pc_ref
p_array.rparticles[3][ind_z_sort] += delta_py

show_density(p_array.tau() * 1e3, p_array.py() * 1e3, ax=None, nbins_x=250, nbins_y=250,
interpolation="bilinear", xlabel="s [mm]", ylabel='py [mrad]', nfig=50,
title="Side view", figsize=None, grid=False)
plt.show()

png

p_array = deepcopy(p_array_init)

wk_tv_kick = WakeTableDechirperOffAxis(b=b, # distance from the plate in [m]
a=0.01, # half gap between plates in [m]
width=0.02, # width of the corrugated structure in [m]
t=t, # longitudinal gap in [m]
p=p, # period of corrugation in [m]
length=1, # length of the corrugated structure in [m]
sigma=12e-6, # characteristic (rms) longitudinal beam size in [m]
orient="horz") # "horz" or "vert" plate orientation

# creation of wake object with parameters
wake = Wake()
# w_sampling - defines the number of the equidistant sampling points for the one-dimensional
# wake coefficients in the Taylor expansion of the 3D wake function.
wake.w_sampling = 500
wake.wake_table = wk_tv_kick
wake.step = 1 # step in Navigator.unit_step, dz = Navigator.unit_step * wake.step [m]

wake.prepare(None)
wake.s_start = 0
wake.s_stop = 1

wake.apply(p_array, dz=1)
show_density(p_array.tau() * 1e6, p_array.py() * 1e3, ax=None, nbins_x=250, nbins_y=250,
interpolation="bilinear", xlabel="s [um]", ylabel='py [mrad]', nfig=60,
title="Side view", figsize=None, grid=False)
plt.show()

png