Skip to main content

This notebook was created by Sergey Tomin (sergey.tomin@desy.de). June 2018.

12. Undulator Matching

Appendix: FODO in thin lens approximation

This notebook was created as an answer for a question what the min/max average beta function can have the EuXFEL SASE1 undulator. The right way is asking the optics expert but it is too simple and does not make you feel the beam optics of this SASE line. Another problem is that FEL experts like to work with average betas. To meet all these requirements, I wrote this notebook, which also might help someone to understand how to deal with linear optics in OCELOT.

Let's consider the FODO cell of the SASE undulator

png

Introducing d=Lcell/2d = L_{cell}/2 as the distance between defocusing and focusing quadrupoles.

We neglect focusing effect in the vertical plan of the horizontal planar undulator.

The transfer matrix of the quadrupole in thin lens approximation:

Mf=[101/f1]M_f = \begin{bmatrix} 1 & 0 \\ 1/f & 1 \end{bmatrix}

where f=1/klf = 1/kl is focal length, kk is quad strength and ll is the quad length.

Drift:

Md=[1d01]M_d = \begin{bmatrix} 1 & d \\ 0 & 1 \end{bmatrix}
%matplotlib inline
import sympy as sp
sp.init_printing()

Calculate the matrix for a half cell, starting in the middle of a defocusing quadrupole and ending in the meddile of a focusing lens.

And denotes fh=2ff_h = 2 f focal length of the half quadrupole

fh, d = sp.symbols("fh, d")

Mqf = sp.Matrix([[1, 0],[-1/fh, 1]])
Md = sp.Matrix([[1, d],[0, 1]])
Mqd = sp.Matrix([[1, 0],[1/fh, 1]])
M1 = Mqf*Md*Mqd
sp.simplify(M1)

[d+fhfhddfh2d+fhfh]\displaystyle \left[\begin{matrix}\frac{d + fh}{fh} & d\\- \frac{d}{fh^{2}} & \frac{- d + fh}{fh}\end{matrix}\right]

For second half cell fhfhf_h \to -f_h

M2 = sp.Matrix([
[(d - fh)/-fh, d],
[ -d/fh**2, (-d -fh)/-fh]])
M_cell = sp.simplify(M1*M2)
M_cell

[2d2fh2+12d(d+fh)fh2d(dfh)fh32d2fh2+1]\displaystyle \left[\begin{matrix}- \frac{2 d^{2}}{fh^{2}} + 1 & \frac{2 d \left(d + fh\right)}{fh}\\\frac{2 d \left(d - fh\right)}{fh^{3}} & - \frac{2 d^{2}}{fh^{2}} + 1\end{matrix}\right]

Phase advance and stability of the FODO cell

Phase advance is related to the transfer matrix by:

cosϕcell=12Trace(Mcell)\cos \phi_{cell} = \frac{1}{2}Trace(M_{cell})

Stability requares:

Trace(Mcell)<2\left|Trace(M_{cell})\right| < 2
trace_M = sp.simplify(M_cell[0,0] + M_cell[1,1])
trace_M

4d2fh2+2\displaystyle - \frac{4 d^{2}}{fh^{2}} + 2

Phase advance:

cosϕcell=12Trace(Mcell)=12(24d2fh2)=12d2fh2=12Lcell216f2\cos \phi_{cell} = \frac{1}{2}Trace(M_{cell}) = \frac{1}{2} \Big(2 - \frac{4 d^2}{f_h^2}\Big) = 1 - \frac{2 d^2}{f_h^2} = 1 - 2\frac{L_{cell}^2}{16 f^2}

using trigonometric double-angle formulae:

cos2ϕ=12sin2ϕ\cos 2\phi = 1-2\sin^2 \phi

and finally

sinϕcell/2=Lcell4f\boxed{\sin \phi_{cell}/2 = \frac{L_{cell}}{4f}}

Stability

24d2fh2<2\left| 2 - \frac{4 d^2}{f_h^2}\right| < 2

rewriting

0<4d2fh2<4fh>d0 < \frac{4 d^2}{f_h^2} < 4 \qquad \to \qquad f_h > d

Finally

f>Lcell4\boxed{f > \frac{L_{cell}}{4}}

β\beta - functions

General solution of the Hill's equation x+K(s)x=0x'' + K(s)x = 0:

{x(s)=εβ(s)cos(ϕ(s)+ϕ)x(s)=εβ(s)(α(s)cos(ϕ(s)+ϕ)+sin(ϕ(s)+ϕ))\begin{cases} x(s) = \sqrt{\varepsilon \beta(s)}\cos(\phi(s) + \phi)\\ x'(s) = -\sqrt{\frac{\varepsilon}{\beta(s)}}\Big(\alpha(s)\cos(\phi(s) + \phi) + \sin(\phi(s) + \phi)\Big) \end{cases}

Applying initial conditions at the point s(0)=s0s(0) = s_0 with ϕ(0)=0\phi(0) = 0 and the particle coordinates x0,x0x_0, x'_0, we will get:

{cosϕ=x0εβ0sinϕ=1ε(α0β0x0+β0x0)\begin{cases} \cos\phi = \frac{x_0}{\sqrt{\varepsilon \beta_0}}\\ \sin\phi = -\frac{1}{\sqrt{\varepsilon}}\Big( \frac{\alpha_0}{\sqrt{\beta_0}}x_0 + \sqrt{\beta_0}x'_0\Big) \end{cases}

inserting the result into the equation above:

[x1x1]=[β1β0(cosϕ01+α0sinϕ01)β1β0sinϕ01)(α0α1)cosϕ01(1+α0α2)sinϕ01β1β0β0β1(cosϕ01α1sinϕ01)][x0x0]\begin{bmatrix} x_1 \\ x'_1 \end{bmatrix} = \begin{bmatrix} \sqrt{\frac{\beta_1}{\beta_0}}(\cos\phi_{0\to1} + \alpha_0\sin\phi_{0\to1}) & \sqrt{\beta_1\beta_0}\sin\phi_{0\to1})\\ \frac{(\alpha_0 - \alpha_1)\cos\phi_{0\to1} - (1 + \alpha_0\alpha_2)\sin\phi_{0\to1}}{\sqrt{\beta_1\beta_0}} & \sqrt{\frac{\beta_0}{\beta_1}}(\cos\phi_{0\to1} - \alpha_1\sin\phi_{0\to1}) \end{bmatrix} \cdot \begin{bmatrix} x_0 \\ x'_0 \end{bmatrix}

Now consider half of the FODO cell (see picture above) (ϕ01=ϕcell/2\phi_{0\to1} = \phi_{cell}/2) and β0=βmin\beta_0 = \beta_{min} and β1=βmax\beta_1 = \beta_{max} (we consider horizontal plane) and remembering that in the middle of the quads α=0\alpha = 0. From another side, we have already calculated the transfer matrix for a half of FODO cell. Collecting all together:

[βmaxβmincosϕcell2βmaxβminsinϕcell2sinϕcell2βmaxβminβminβmaxcosϕcell2];[1+d/fhdd/fh21d/fh]\begin{bmatrix} \sqrt{\frac{\beta_{max}}{\beta_{min}}}\cos\frac{\phi_{cell}}{2} & \sqrt{\beta_{max}\beta_{min}}\sin\frac{\phi_{cell}}{2}\\ -\frac{\sin\frac{\phi_{cell}}{2}}{\sqrt{\beta_{max}\beta_{min}}} & \sqrt{\frac{\beta_{min}}{\beta_{max}}}\cos\frac{\phi_{cell}}{2} \end{bmatrix}; \qquad \begin{bmatrix} 1 + d/f_h & d \\ -d/f_h^2 & 1 - d/f_h \end{bmatrix}

after some gymnastics with trigonometric identities (and taking into account sinϕcell/2=dfh=Lcell4f\sin \phi_{cell}/2 = \frac{d}{f_h}= \frac{L_{cell}}{4f})

βmax=1+sinϕcell2sinϕcellLcell\beta_{max} = \frac{1 + \sin \frac{\phi_{cell}}{2}}{\sin\phi_{cell}}L_{cell} βmin=1sinϕcell2sinϕcellLcell\beta_{min} = \frac{1 - \sin \frac{\phi_{cell}}{2}}{\sin\phi_{cell}}L_{cell}

If we neglect the fact the beta function in the drift space takes the form of a quadratic function (β(s)=β02α0s+γ0s2\beta(s) = \beta_0 - 2\alpha_0 s + \gamma_0 s^2) and assume instead a linear behavior, the average β\beta-function will be

ββmax+βmin2=Lcellsinϕcell\overline \beta \approx \frac{\beta_{max} + \beta_{min}}{2} = \frac{L_{cell}}{\sin\phi_{cell}}

What means that minimum average beta-function will be with phase advance ϕcell=900\phi_{cell} = 90^0. For SASE1 undulator Lcell=12.2L_{cell} = 12.2 and taking into account that our calculations were done with some level approximation:

βmin12.2msin900=12.2m\overline \beta_{min} \approx \frac{12.2 m}{\sin 90^0} = 12.2 m

More accurate solution

Taking into account quadratic shape of the β\beta in the drift space and go through some simple steps, finally we will get more exact solution:

  1. Twiss parameters transformation
[βαγ]1=[C22SCS2CCSC+SCSSC22SCS2][βαγ]0\begin{bmatrix} \beta \\ \alpha \\ \gamma \end{bmatrix}_1 = \begin{bmatrix} C^2 & -2SC & S^2\\ -C C' & SC' + S'C & -SS'\\ C'^2 & -2 S'C' & S'^2 \end{bmatrix} \cdot \begin{bmatrix} \beta \\ \alpha \\ \gamma \end{bmatrix}_0

Where C,S,C,SC,S, C', S' are elements of the transfer matrix

M=[CSCS]M = \begin{bmatrix} C & S \\ C' & S' \end{bmatrix}
  1. twiss parameters after the thin quadrupole:
β1=β0α1=β0f+α0γ1=1f22α0f+γ0\beta_1 = \beta_0 \\ \alpha_1 = -\frac{\beta_0}{f} + \alpha_0 \\ \gamma_1 = \frac{1}{f^2} - 2 \frac{\alpha_0}{f} + \gamma_0

In the middle of the quadrupole α0=0\alpha_0 = 0 then

α1=β0fh\alpha_1 = -\frac{\beta_0}{f_h}
  1. In the drift space β\beta behave:
β(s)=β02α0s+γ0s2\beta(s) = \beta_0 - 2\alpha_0 s + \gamma_0 s^2
  1. Because FODO cell is symetric and we are considering the thin lens approximation the average β\overline \beta is:
β=2L0L/2(β02α0s+γ0s2)ds=β0α0L2+γ0L212\overline \beta = \frac{2}{L}\int_0^{L/2}\left(\beta_0 - 2\alpha_0 s + \gamma_0s^2 \right)ds = \beta_0 - \frac{\alpha_0 L}{2} + \gamma_0\frac{L^2}{12}
  1. Inserting expression for βmin\beta_{min} and express focal length against the phase advance we will get:
β=L6sinϕcell(5+cosϕcell)\boxed{\overline \beta = \frac{L}{6 \sin\phi_{cell}}\big(5 + \cos\phi_{cell} \big)}
info

The result looks simple, probably this expression can be found in some handbooks.

The minimum possible average βmin\overline\beta_{min} will be with dβdϕcell=0\frac{d \overline \beta}{d\phi_{cell}} = 0 what gives us ϕcell=πarctan261010\phi_{cell} = \pi - \arctan 2\sqrt 6 \approx 101^0.

And for our case Lcell=12.2mL_{cell} = 12.2 m it will be

βmin9.96\overline \beta_{min} \approx 9.96

Might be useful to find condition for minimum possible βmax\beta_{max}

ddϕβmax=0\frac{d}{d\phi}\beta_{max} = 0
phi = sp.Symbol("phi")
sp.diff((1 + sp.sin(phi/2))/sp.sin(phi), phi)

(sin(ϕ2)+1)cos(ϕ)sin2(ϕ)+cos(ϕ2)2sin(ϕ)\displaystyle - \frac{\left(\sin{\left(\frac{\phi}{2} \right)} + 1\right) \cos{\left(\phi \right)}}{\sin^{2}{\left(\phi \right)}} + \frac{\cos{\left(\frac{\phi}{2} \right)}}{2 \sin{\left(\phi \right)}}

import numpy as np
from scipy.optimize import root
from matplotlib import pyplot as plt
fun = lambda phi: -(np.sin(phi/2) + 1)*np.cos(phi)/np.sin(phi)**2 + np.cos(phi/2)/(2*np.sin(phi))
res = root(fun, 0.1)
print("Cell phase advance for minimum possible bmax: phi = ", res.x*180/np.pi)
    Cell phase advance for minimum possible bmax: phi =  [76.34541525]

SASE1 undulator. Numerical simulation

%matplotlib inline
from ocelot import *
from ocelot.gui.accelerator import *
from scipy.integrate import simps
from ocelot.cpbd import optics

d1 = Drift(l=0.43065, eid='d1')
d2 = Drift(l=0.55565, eid='d2')
l = 0.1137
k = 2*0.1137/l

qd = Quadrupole(l=l/2, k1=-k, tilt=0.0)
qf = Quadrupole(l=l, k1=k, tilt=0.0)
K = 3
u40 = Undulator(lperiod=0.04, nperiods=125, Kx=K, Ky=0.0)
m1 = Marker()
m2 = Marker()
fodo_cell = [m1, qd, d1, u40, d2, qf, d1, u40, d2, qd, m2]
fodo_lat = MagneticLattice(fodo_cell)

tws = twiss(fodo_lat, nPoints=1000)

plot_opt_func(fodo_lat, tws, top_plot=["mux", "muy"], legend=False)
plt.show()
    initializing ocelot...

png

def beta(k):
qd.k1 = -k
qf.k1 = k
fodo_lat.update_transfer_maps()
tws = twiss(fodo_lat, nPoints=1000)
bx = np.array([tw.beta_x for tw in tws])
s = np.array([tw.s for tw in tws])
bx_av = simps(bx, s)/fodo_lat.totalLen
phi = tws[-1].mux
L = fodo_lat.totalLen
bx_av_th = L/6 * (5 + np.cos(phi))/np.sin(phi)
return bx_av, bx.max(), bx.min(), tws[-1].mux*180/np.pi, bx_av_th

k = np.arange(0.3, 2.9, 0.05)
Bx_min = []
Bx_max = []
Bx_av = []
Bx_av_theory = []
Phi = []
for k1 in k:
bx_av, bx_max, bx_min, phi, bx_av_th = beta(k1)
Bx_min.append(bx_min)
Bx_max.append(bx_max)
Bx_av.append(bx_av)
Phi.append(phi)
Bx_av_theory.append(bx_av_th)

fig, ax1 = plt.subplots()
plt.title(r"$\beta$ - average and max against quad strength")
ax1.plot(k, Bx_av, label=r"$\beta_{av}$")
ax1.plot(k, Bx_av_theory,"g--", label=r"$\beta_{av}^{theory}$")
ax1.plot(k, Bx_max, label=r"$\beta_{max}$")
ax1.set_ylabel(r"$\beta$, m")
ax1.set_xlabel("k, 1/m2")
plt.legend()
print("min(beta_av) = ", np.min(Bx_av), "m" )
ax2 = ax1.twinx()
ax2.plot(k, Phi, "r", label=r"$\phi_{cell}$")
ax2.set_ylabel(r"$\phi_{cell}$", color='r')
ax2.tick_params('y', colors='r')
plt.legend()
plt.grid(False)
plt.show()
    min(beta_av) =  9.991835898036324 m

png

Limitations

The maximum possible strength of the undulator quadrupoles is kmax=1.94729k_{max} = 1.94729 what means that we can have minimum average beta-function close to 10m (see the Figure above).

Now we need to consider the limitations of the matching sections.

Inverse the task

Find the quad strength and FODO cell params if beta average is defined

FODO estimator

from scipy.optimize import root

def fodo_estimator(beta_av, Lcell, lq=0.1137):
fun = lambda phi: Lcell/6 * (5 + np.cos(phi))/np.sin(phi) - beta_av
res = root(fun, 0.1)
phi = res.x[0]
b_av = Lcell/6 * (5 + np.cos(phi))/np.sin(phi)
f = Lcell/(4*np.sin(phi/2))
kq = 1/f/lq
bmax = (1 + np.sin(phi/2))/np.sin(phi)*Lcell
bmin = (1 - np.sin(phi/2))/np.sin(phi)*Lcell
return kq, phi, bmin, bmax, b_av

kq, phi, bmin, bmax, b_av = fodo_estimator(beta_av=11, Lcell=12.2)
print("k1 = ", kq, "1/m^2")
print("bmin / bmax = ", bmin, "/", bmax, "m")
print("calculated beta_av = ", b_av, "m")
print("phi = ", phi*180/np.pi, "deg")
    k1 =  1.771751963648942 1/m^2
bmin / bmax = 4.851965262428619 / 20.314939511625177 m
calculated beta_av = 11.000000000000059 m
phi = 75.8191420392388 deg

FODO correction due to undulator focusing

def fodo_correction_SASE1(beta_av=60, K=3):
kq, phi, bmin, bmax, b_av = fodo_estimator(beta_av=beta_av, Lcell=12.2)

print("Estimation: beta_x = ", np.round(bmin,3), "; beta_y = ", np.round(bmax, 3),
"; phi = ", np.round(phi*180/np.pi), "grad"
"; kf/kd = ", np.round(kq, 4),"/", np.round(-kq, 4))

# SASE1 FODO cell
d1 = Drift(l=0.43065, eid='d1')
d2 = Drift(l=0.55565, eid='d2')
qd = Quadrupole(l=0.1137/2, k1=-kq, tilt=0.0)
qf = Quadrupole(l=0.1137, k1=kq, tilt=0.0)
u40 = Undulator(lperiod=0.04, nperiods=125, Kx=K, Ky=0.0)
m1 = Marker()
m2 = Marker()
fodo_cell = [m1, qd, d1, u40, d2, qf, d1, u40, d2, qd, m2]

# constraints
constr = {fodo_cell[-1]: {'mux':phi, "muy":phi}, "periodic": True}

# variables
vars = [qf, qd]

tws = Twiss()
tws.beta_x = bmin
tws.beta_y = bmax
tws.E = 14

res = match(MagneticLattice(fodo_cell), constr=constr,tw=tws,
vars=vars, max_iter=2000, verbose=False)
kf, kd = res

qf.k1 = kf
qd.k1 = kd

fodo_lat = MagneticLattice(fodo_cell)

tws = twiss(fodo_lat, tws0=tws, nPoints=1000)
print("Correction: beta_x = ", np.round(tws[0].beta_x, 3),
"beta_y = ", np.round(tws[0].beta_y, 3),
" kf/kd = ", np.round(kf,4), "/", np.round(kd,4))
#plot_opt_func(fodo_lat, tws, top_plot=["mux", "muy"], legend=False)
#plt.show()
return kf, kd, bmin, bmax

Current lattice β32\overline\beta \approx 32 m

import sase1_lattice as sase1
lat = MagneticLattice(sase1.cell)#, stop=sase1.fodo_match)
print(sase1.tws)
#sase1.tws.beta_x = 15
#sase1.tws.beta_y = 50
tws = twiss(lat, tws0=sase1.tws)
plot_opt_func(lat, tws, legend=False)
plt.show()
    emit_x  = 0.0
emit_y = 0.0
beta_x = 10.506745988156398
beta_y = 42.02704133328497
alpha_x = 0.676085898798978
alpha_y = -2.1449229692237783
gamma_x = 0.0
gamma_y = 0.0
Dx = 0.0
Dy = 0.0
Dxp = 0.0
Dyp = 0.0
mux = 0.0
muy = 0.0
nu_x = 0.0
nu_y = 0.0
E = 14
s = 0.0

png

β=60\overline \beta = 60 m

Sometimes require run this cell two times to get a correct result

kf, kd, bmin, bmax = fodo_correction_SASE1(beta_av=60, K=3)
# constraints
constr = {sase1.fodo_match: {'beta_x':bmax, "beta_y":bmin,
"alpha_x": 0, "alpha_y": 0}}

quad_limits = {sase1.qf_2177_t2: [-0.654, 0],
sase1.qf_2192_t2: [0 ,0.654],
sase1.qf_2207_t2: [-0.654, 0],
sase1.qf_2218_t2: [0 ,0.654],
sase1.qa_2229_t2: [-1.94, 0],
sase1.qa_2235_t2: [0, 1.94]}
# variables
vars = [sase1.qf_2177_t2, sase1.qf_2192_t2,
sase1.qf_2207_t2,
sase1.qf_2218_t2, sase1.qa_2229_t2, sase1.qa_2235_t2]

# because of variables redundancy, we can help a bit to find a more elegant solution
# *** comment lines or change inital conditions if you want to play with matching
sase1.qf_2177_t2.k1 = -0.2244
sase1.qf_2192_t2.k1 = 0.2309
sase1.qf_2207_t2.k1 = -0.1911
sase1.qf_2218_t2.k1 = 0.1653
sase1.qa_2229_t2.k1 = -0.0881
sase1.qa_2235_t2.k1 = 0.0953

# *** comment lines or change inital conditions if you want to play with matching
lat.update_transfer_maps()

res = match(lat, constr=constr, vars=vars, tw=sase1.tws, max_iter=2000, verbose=False)

sase1.qa_2241_sa1.k1 = kd
sase1.qa_2247_sa1.k1 = kf
sase1.qa_2247_sa1_h.k1 = kf
lat.update_transfer_maps()
tws = twiss(lat, tws0=sase1.tws)
plot_opt_func(lat, tws, legend=False)
plt.show()
    Estimation: beta_x =  54.076 ; beta_y =  66.34 ; phi =  12.0 grad; kf/kd =  0.2937 / -0.2937
initial value: x = [0.29368260023214693, -0.29368260023214693]
Optimization terminated successfully.
Current function value: 0.000032
Iterations: 40
Function evaluations: 79
Correction: beta_x = 54.076 beta_y = 66.34 kf/kd = 0.2648 / -0.2583
initial value: x = [-0.2244, 0.2309, -0.1911, 0.1653, -0.0881, 0.0953]
Optimization terminated successfully.
Current function value: 0.000031
Iterations: 158
Function evaluations: 279

png

Checking quads limits

# check quads limits
for q, k in zip(vars, res):
print(q.id + ".k1 = "+ str(np.round(k,4)) + "; strength is OK :",
quad_limits[q][0]<k<quad_limits[q][1])
    QF.2177.T2.k1 = -0.2244;   strength is OK : True
QF.2192.T2.k1 = 0.2309; strength is OK : True
QF.2207.T2.k1 = -0.1911; strength is OK : True
QF.2218.T2.k1 = 0.1653; strength is OK : True
QA.2229.T2.k1 = -0.0881; strength is OK : True
QA.2235.T2.k1 = 0.0953; strength is OK : True

β=11\overline \beta = 11 m

Sometimes require run this cell two times to get a correct result

kf, kd, bmin, bmax = fodo_correction_SASE1(beta_av=11, K=3)
# constraints
constr = {sase1.fodo_match: {'beta_x':bmax, "beta_y":bmin,
"alpha_x": 0, "alpha_y": 0}}


# variables
vars = [sase1.qf_2177_t2, sase1.qf_2192_t2, sase1.qf_2207_t2,
sase1.qf_2218_t2, sase1.qa_2229_t2, sase1.qa_2235_t2]

# because of variables redundancy, we can help a bit to find a more elegant solution
# *** comment lines or change inital conditions if you want to play with matching
sase1.qf_2177_t2.k1 = -0.2227
sase1.qf_2192_t2.k1 = 0.211
sase1.qf_2207_t2.k1 = -0.2176
sase1.qf_2218_t2.k1 = 0.2392
sase1.qa_2229_t2.k1 = -0.9728
sase1.qa_2235_t2.k1 = 1.3215
# *** comment lines or change inital conditions if you want to play with matching
lat.update_transfer_maps()

res = match(lat, constr=constr, vars=vars, tw=sase1.tws, max_iter=2000, verbose=False)

sase1.qa_2241_sa1.k1 = kd
sase1.qa_2247_sa1.k1 = kf
sase1.qa_2247_sa1_h.k1 = kf
lat.update_transfer_maps()
tws = twiss(lat, tws0=sase1.tws)
plot_opt_func(lat, tws, legend=False)
plt.show()
    Estimation: beta_x =  4.852 ; beta_y =  20.315 ; phi =  76.0 grad; kf/kd =  1.7718 / -1.7718
initial value: x = [1.771751963648942, -1.771751963648942]
Optimization terminated successfully.
Current function value: 0.000035
Iterations: 33
Function evaluations: 66
Correction: beta_x = 4.852 beta_y = 20.315 kf/kd = 1.7811 / -1.7755
initial value: x = [-0.2227, 0.211, -0.2176, 0.2392, -0.9728, 1.3215]
Optimization terminated successfully.
Current function value: 0.000001
Iterations: 154
Function evaluations: 275

png

Checking quads limits

# check quads limits
for q, k in zip(vars, res):
print(q.id + ".k1 = "+ str(np.round(k,4)) + "; strength is OK :",
quad_limits[q][0]<k<quad_limits[q][1])
    QF.2177.T2.k1 = -0.2226;   strength is OK : True
QF.2192.T2.k1 = 0.211; strength is OK : True
QF.2207.T2.k1 = -0.2176; strength is OK : True
QF.2218.T2.k1 = 0.2393; strength is OK : True
QA.2229.T2.k1 = -0.9747; strength is OK : True
QA.2235.T2.k1 = 1.3232; strength is OK : True